

MSC GEODETIC ENGINEERING

MSR-02: ADVANCED TECHNIQUES FOR MOBILE SENSING AND ROBOTICS (GEODESY TRACK)

05: FROM IMAGES TO POINT CLOUDS (SFM)

DR. LASSE KLINGBEIL

INSTITUTE FOR GEODESY AND GEOINFORMATION UNIVERSITY OF BONN

ADVANCED TECHNIQUES FOR MOBILE SENSING AND ROBOTICS – LECTURE CONTENT

- (1) Mobile Laser Scanning
- (2) Trajectory Estimation
- (3) System Calibration
- (4) Sensor Synchronisation
- (5) From Images to Point Clouds (SfM)
- (6) Accuracy of Point Clouds I
- (7) Accuracy of Point Clouds II
- (8) Deformation Analysis with Point Clouds I
- (9) Deformation Analysis with Point Clouds II

SO FAR: MOBILE LASER SCANNING

$$\mathbf{p}_{object}^{global}(t_s) = \mathbf{T}_{body}^{global}(t_s) \cdot \mathbf{T}_{sensor}^{body} \cdot \mathbf{p}_{object}^{sensor}(t_s)$$

$$\begin{bmatrix} x_e \\ y_e \\ z_e \end{bmatrix} = \begin{bmatrix} t_x \\ t_y \\ t_z \end{bmatrix} + \mathbf{R}^e_n \left(L, B \right) \mathbf{R}^n_b \left(\phi, \theta, \psi \right) \cdot \left[\begin{bmatrix} \Delta x \\ \Delta y \\ \Delta z \end{bmatrix} + \mathbf{R}^b_s \left(\alpha, \beta, \gamma \right) \cdot \begin{bmatrix} 0 \\ d \cdot \sin b \\ d \cdot \cos b \end{bmatrix} \right]$$

3

UNIVERSITÄT BONN

igg

NOW: WHAT IF THE THE SENSOR IS A CAMERA?

We can not calculate a 3D position of an object from a single camera observation. What to do?

STRUCTURE FROM MOTION/MULTI-VIEW STEREO

igg

UNIVERSITÄT BONN

LINK TO STACHNISS' LECTURE

Cyrill Stachniss: Lecture ,Direct Linear Transform: Camera Calibration and Localization'

Now:

Estimate

- Intrinsics
- Extrinsics
- Object Points

from multiple images

No detailed photogrammetric + mathematical background in this lecture!

Focus on UAV mapping

Mapping (Recap)

Direct linear transform (DLT) maps any object point ${\bf X}$ to the image point ${\bf x}$

DEFINITIONS FROM FÖRSTNER'S BOOK

Wolfgang Förstner, Bernhard P. Wrobel: Photogrammetric Computer Vision, Springer

DEFINITIONS FROM FÖRSTNER'S BOOK $f'_{it} = \mathcal{P}_t(\mathcal{F}_i; \mathcal{O}_t, \mathcal{C}_t)$

- Orientation or motion from structure:
 → get {O_i} from correspondences {F_i, f_{it}}
- Calibration:
 - \rightarrow get C_t from {f_{it}} and possibly given {F_i}
- Reconstruction or structure from motion (SfM):
 → get {F_i} from {f_{it}}
- Relative Orientation:

→ get relative pose between multiple images and a **local** scene description {F_i} from corresponding image points { $f_{i_a,} f_{i_b,} f_{i_c,...}$ } in multiple images a, b, c, ...

- Absolute Orientation:
 - → get **global** scene {F_i} from **local** scene {F_i} and 3D control features

Wolfgang Förstner, Bernhard P. Wrobel: Photogrammetric Computer Vision, Springer

DEFINITIONS FROM FÖRSTNER'S BOOK $f'_{it} = \mathcal{P}_t(\mathcal{F}_i; \mathcal{O}_t, \mathcal{C}_t)$

Bundle Adjustment (BA):

 ⇒ get {F_i} and {O_i} and C_t from {f_{it}}
 ⇒ global {F_i} also needs
 3D control features or
 direct measurements of
 some points/poses (e.g. via GNSS)
 → combines all points above
 → closely related to SLAM

INIVERSITÄT

What most people actually mean when they say SfM:
 → The above BA including all necessary steps to create the initial solution (relative orientation, sequentially adding images to create an image block, not necessarily scaled and in absolute coordinates)
 → Result: Sparse point cloud {F_i} & image parameters {O_i}, C_t

Wolfgang Förstner, Bernhard P. Wrobel: Photogrammetric Computer Vision, Springer

UNIVERSITÄT BONN

SFM/MVS WORKFLOW

SIFT OR SIMILAR

From: Iglhaut, J., Cabo, C., Puliti, S. et al. Structure from Motion Photogrammetry in Forestry: a Review. Curr Forestry Rep 5, 155–168 (2019). https://doi.org/10.1007/s40725-019-00094-3

1. Extract features

- SIFT, SURF, BRISC, ...
- o Corner or Blob Features
- o Also multi-scale approaches
- 2. Feature description
 - Vector of numbers describing gradients, intensities, ...
- 3. Feature Matching
 - Finding the same features in multiples images

11

o Outlier rejection

STRUCTURE FROM MOTION (SFM)

From: Iglhaut, J., Cabo, C., Puliti, S. et al. Structure from Motion Photogrammetry in Forestry: a Review. Curr Forestry Rep 5, 155–168 (2019). https://doi.org/10.1007/s40725-019-00094-3

- 1. Initialize
 - use two images
 - o Initialize structure
- 2. Add new images
 - Orient new image using existing structure
 - o Run local BA
 - o Initialize new structure points
- 3. Optional: Georeferencing
 - Include information from GPS or Ground control points
- 4. Run final BA on complete image block

SPARSE POINT CLOUD

UNIVERSITÄT BONN

MULTI VIEW STEREO (MVS)

From: Iglhaut, J., Cabo, C., Puliti, S. et al. Structure from Motion Photogrammetry in Forestry: a Review. Curr Forestry Rep 5, 155–168 (2019). https://doi.org/10.1007/s40725-019-00094-3

- Try to find much more correspondences between images than using features
- Ideal case: match every pixel
- Match areas instead of features
- Use known orientations and epipolar constraints
- Use multi-resolution
- Use multi-image matching
- Use assumptions on surface smoothness (semi-global matching)

14

→ Result: dense cloud

DENSE POINT CLOUD

IMAGE BASED (UAV) VS LASER BASED (TLS)

GEOREFERENCING

- Georeferencing is needed
 o to get a scale OR
 - to get the scene in a global coordinate system

- Option 1: Use known scene points (ground control points or 3D control features) to absolutely orient all images and the scene (indirect georeferencing, ,classical' case)
- Option 2: Use onboard sensors to absolutely orient images and skip SfM step (direct georeferencing, rarely used)
- Option 3: Combine 1+2 (integrated sensor orientation, often used)

INDIRECT GEOREFERENCING

- Deploy a set of Ground Control points and measure their coordinates
- Use total stations: ~mm accuracy
- Use RTK GNSS: ~1-3cm accuracy

UNIVERSITÄT BON

DIRECT GEOREFERENCING & INTEGRATED SENSOR ORIENTATION

 Determine the camera orientation (position and rotation parameters) at the time when the image was taken

- We need:
 - A system/algorithm to determine the position and orientation
 of the UAV → lecture Trajectory estimation
 - The relative orientation (rotation and translation) between the UAV and the camera → lecture System calibration
 - The exact time (syncronized with trajectory estimation), when the image was taken → lecture Sensor Synchronization

UAV NAVIGATION SENSORS

STANDARD UAV SENSORS

- Low-Cost Inertial sensors for in-flight stability control
- Low-cost code based GNSS (~several meters accuracy)
- Sensors used for navigation and mission control
- Sensors can also be used for image tagging (time-sync and calibration is not critical as accuracy is anyway ~m)
- Needs ground control points for precise **indirect georeferencing**

JIVERSITÄT RO

UAV NAVIGATION SENSORS

ON-BOARD RTK GNSS

- More and more commercial solution are available
- Real-time solution needs connection for correction data, otherwise offline processing
- **Time-sync** and **calibration** becomes critical, most solution work only with certain cameras
- RTK GNSS mostly used only for image tagging not for navigation
- High precision Image coordinates can then be integrated in the Bundle Adjustment (integrated sensor-orientation)

Mavinci Sirius Pro

SenseFly eBee RTK

UAV NAVIGATION SENSORS

HIGH-END IMU/GNSS RECEIVER

- High-end IMU/GNSS usually used for direct georeferencing of laser scans
- Same principle as in mobile laser scanning

UNIVERSITÄT BON

SUMMARY SFM PIPELINE

From: Farid Javadnejad. Small Unmanned Aircraft Systems (UAS) for Engineering Inspections and Geospatial Mapping, PhD Thesis, Oregon State University, 2018

Klingbeil: Advanced Techniques for Mobile Sensing and Robotics - Geodesy - 05 - From Images to Point Clouds

23 UNIVERSITÄT BONN

igg

SFM SOFTWARE (NO RANKING, NOT TESTED, NO GUARANTEE)

• Free

Visual SFM
Bundler + PMVS2
OSM-Bundler
MicMac
Meshroom

o SF3M

0...

Commercial solutions

Agisoft Metashape
Pix4D
Reality Capture
DroneDeploy
Photomodeler

Google and find more

PROJECT EXAMPLE: DFG RESEARCH GROUP: MAPPING ON DEMAND

• **Goal:** Lightweight Unmanned Aerial Vehicle based 3D reconstruction of objects and environments

Example scenario:

modified, www.wikipedia.org

- Based on a semantic user request (e.g. ,find all open windows!')
- On demand (no preparation of the environment)
- In **Realtime** (ideally no offline processing)
- Fully autonomous flight (trajectory planning, collision avoidance)
- Interpretation of facade elements

Project started in 2012 and finished in 2019

MAPPING ON DEMAND: SUB-PROJECTS

Real-time Pose Determination

(Uni Bonn, Inst. of Geodesy and Geoinformation, Geodesy)

- Incremental Mapping and Exploration
 (Uni Bonn, Inst. of Geodesy and Geoinformation, Photogrammetry)
- Local Perception and Obstacle Detection (Uni Bonn, Inst. of Computer Science, Intelligent Autonomous Systems)
- **3D Surface Reconstruction** (TU München, Inst. of Computer Science, Computer Vision)
- Representation and Generation of 3D and 4D Maps (Uni Bonn, Inst. of Computer Science, Computer Graphics)
- Semantic Building Models

(Uni Bonn, Inst. of Geodesy and Geoinformation, Geoinformation)

CUSTOM UAV

igg

UNIVERSITÄT BONN

CUSTOM GEOREFERENCING SYSTEM

Sensors

- 3 axis accelerometer
- 3 axis angular rate sensor
- 3 axis magnetometer
- barometer
- dual frequency GPS receiver
- single frequency GPS receiver
- radio link for GPS correction data

28

- input for external sensors (e.g. stereo cameras)
- small size, small weight (~400g including antennas)
- real-time (!) processing of position and orientation
- high accuracy (~1cm, <1°)
- custom multi sensor fusion algorithms for high robustness
- high flexibility (use with any other mobile multi-sensor system)

TRAJECTORY ESTIMATIOPN / KALMAN FILTER

SIMPLIFIED INERTIAL NAVIGATION

igg

UNIVERSITÄT BONN

KALMAN FILTER

MEASUREMENT MODELS

Klingbeil: Advanced Techniques for Mobile Sensing and Robotics - Geodesy - 05 - From Images to Point Clouds

30

KALMAN FILTER

MEASUREMENT MODELS

• Earth magnetic field

$$\mathbf{z}_{mag} = \mathbf{q}_b^{n,-1} \cdot \mathbf{b}_{earth}^n \cdot \mathbf{q}_b^n$$

igg

UNIVERSITÄT BONN

KALMAN FILTER

MEASUREMENT MODELS

UNIVERSITÄT BONN

ACCURACY ANALYSIS I

- Acquisition of images @1Hz
- Onboard camera pose estimation using direct georeferencing system
- offline bundle adjustment to estimate camera poses based on images
- Comparision of both trajectories (up to a 7 parameter transformation)

ACCURACY ANALYSIS II

Difference between the camera positions as measured by onboard RTK and as determined using GCPs and photogrammetry \rightarrow ~cm

34

INCREMENTAL BUNDLE ADJUSTMENT (VISUAL ODOMETRY)

igg

UNIVERSITÄT BONN

INCREMENTAL BUNDLE ADJUSTMENT (VISUAL ODOMETRY)

🔶 igg

UNIVERSITÄT BONN

GNSS/ STEREO CAMERA INTEGRATION

- Real-time Visual Odometry based on 4 fisheye cameras (incremental bundle adjustment)
- Tightly-coupled integration of GPS raw observations (double differences) into the adjustment

37

TESTFLIGHTS

Postprocessing:

- 4 flights around "Versuchsgut Frankenforst" near Bonn
- ~5min per flight
- Close to buildings and trees
- Manual control
- On board real time georeferencing

38

- No control points
- High resolution images @1Hz
- Bundle adjustment on high resolution images
- Transformation from photogrammetric trajectory to GPS trajectory
- Dense image matching (PMVS: free software) with oriented images
- → Georeferenced Point cloud without usage of control points

39

Klingbeil: Advanced Techniques for Mobile Sensing and Robotics - Geodesy - 05 - From Images to Point Clouds

UNIVERSITÄT

40

igg

UNIVERSITÄT BON

merged point clouds from 4 flights (no scan registration!)

UAV BASED MOBILE MAPPING

ACCURACY ANALYSIS

Point to Point distance (neares neighbour)

43

Comparison with Terrestrial Laser Scan

PROJECT EXAMPLE CROPWATCH

• Goal: Observe plant parameters (e.g. canopy height) from UAV flights during growing season

44

CREATE GEOREFERENCED POINT CLOUDS

45

UAV BASED HEIGHT MEASUREMENTS

- Measure before emergence and at different dates
- Calculate difference

UNIVERSITÄT BON

UAV BASED HEIGHT MEASUREMENTS

igg

UNIVERSITÄT BONN

UAV BASED HEIGHT MEASUREMENTS

48

UNIVERSITÄT BONN

igg

From: Becirevic, D., Klingbeil, L., Honecker, A., Schumann, H., Rascher, U., Léon, J., and Kuhlmann, H.: On the derivation of crop heights from multitemporal UAV based imagery, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2/W5, 95-102, https://doi.org/10.5194/isprs-annals-IV-2-W5-95-2019, 2019.

IMAGE BASED POINT CLOUDS EXAMPLE

• Building industry, progress documentation

Leica

49

UNIVERSITÄT BONN

igg

Surveying and Mapping

IMAGE BASED POINT CLOUDS EXAMPLE

igg

UNIVERSITÄT BONN

IMAGE BASED POINT CLOUDS EXAMPLE

51

UNIVERSITÄT BONN

igg

WHAT YOU HAVE LEARNED TODAY

- How can point clouds be created from images?
- What are the processing steps in a SfM processing pipeline?
- What georeferencing options are there for UAV based mobile mapping?
- How can you calculate the pose of a UAV?
- What are applications for UAV based mapping?

THANKS

